Engrafted Neural Stem/Progenitor Cells Promote Functional Recovery through Synapse Reorganization with Spared Host Neurons after Spinal Cord Injury
نویسندگان
چکیده
Neural stem/progenitor cell (NSPC) transplantation is a promising therapeutic strategy for spinal cord injury (SCI). However, the efficacy of NSPC transplantation on severe SCI is poorly understood. We herein show that NSPC transplantation promotes functional recovery after mild and moderate SCI, but not after severe SCI. In severe SCI mice, there were few remaining host neurons within the range of NSPC engraftment; thus, we examined whether the co-distribution of transplant and host is a contributory factor for functional improvement. A cellular selective analysis using laser microdissection revealed that drug-induced host neuronal ablation considerably decreased the synaptogenic potential of the engrafted NSPCs. Furthermore, following host neuronal ablation, neuronal retrograde tracing showed less propriospinal relay connections bridging the lesion after NSPC transplantation. Our findings suggest that the interactive synaptic reorganization between engrafted NSPCs and spared host neurons is crucial for functional recovery, providing significant insight for establishing therapeutic strategies for severe SCI.
منابع مشابه
Repair of Spinal Cord Injury by Co-Transplantation of embryonic Stem Cell-Derived Motor Neuron and Olfactory Ensheathing Cell
Background: The failure of regeneration after spinal cord injury (SCI) has been attributed to axonal demyelination and neuronal death. Cellular replacement and white matter regeneration are both necessary for SCI repair. In this study, we evaluated the co-transplantation of olfactory ensheathing cells (OEC) and embryonic stem (ES) cell-derived motor neurons (ESMN) on contused SCI. Methods: OEC...
متن کاملGrafted Human iPS Cell-Derived Oligodendrocyte Precursor Cells Contribute to Robust Remyelination of Demyelinated Axons after Spinal Cord Injury
Murine- and human-induced pluripotent stem cell-derived neural stem/progenitor cells (iPSC-NS/PCs) promote functional recovery following transplantation into the injured spinal cord in rodents and primates. Although remyelination of spared demyelinated axons is a critical mechanism in the regeneration of the injured spinal cord, human iPSC-NS/PCs predominantly differentiate into neurons both in...
متن کاملA Neonatal Mouse Spinal Cord Injury Model for Assessing Post-Injury Adaptive Plasticity and Human Stem Cell Integration
Despite limited regeneration capacity, partial injuries to the adult mammalian spinal cord can elicit variable degrees of functional recovery, mediated at least in part by reorganization of neuronal circuitry. Underlying mechanisms are believed to include synaptic plasticity and collateral sprouting of spared axons. Because plasticity is higher in young animals, we developed a spinal cord compr...
متن کاملHuman neural stem cells differentiate and promote locomotor recovery in spinal cord-injured mice.
We report that prospectively isolated, human CNS stem cells grown as neurospheres (hCNS-SCns) survive, migrate, and express differentiation markers for neurons and oligodendrocytes after long-term engraftment in spinal cord-injured NOD-scid mice. hCNS-SCns engraftment was associated with locomotor recovery, an observation that was abolished by selective ablation of engrafted cells by diphtheria...
متن کاملComprehensive Monosynaptic Rabies Virus Mapping of Host Connectivity with Neural Progenitor Grafts after Spinal Cord Injury
Neural progenitor cells grafted to sites of spinal cord injury have supported electrophysiological and functional recovery in several studies. Mechanisms associated with graft-related improvements in outcome appear dependent on functional synaptic integration of graft and host systems, although the extent and diversity of synaptic integration of grafts with hosts are unknown. Using transgenic m...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 5 شماره
صفحات -
تاریخ انتشار 2015